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Abstract 
                 In this paper,  Lagrange  and Hamilton's equations for the conservative 

systems have been studied through the applications and solving some physical 

questions in Newton's field, electrical field, also of the plants moving within the  

sun's gravity field as well, the solving also have been compared and found all 

identical , and extraction of the potential energy of conservative force. But 

dealing with Hamilton's equations is easier because they are from the first order; 

therefore, we are dealing with the scalar quantities and not dealing with vector 

once as in Newton's mechanics.  

 
  

الفيزيائية باستخذام معادلات لاغرانج وهاملتون للأنظمة المحافظة لتطبيقات حل المسائ  
 

 و.و.أحمذ عهً عجذ انسبدح انمقذادي

انجبمعخ انمسزىصشٌخ - كهٍخ انزشثٍخ الأسبسٍخ  

 

 الخلاصة

وحم  فً هزا انجحث رمذ دساسخ معبدلاد لاغشاوج وهبمهزىن نلأوظمخ انمحبفظخ مه خلال رطجٍقبد         

ثعض الأسئهخ انفٍزٌبوٌخ فً حقم وٍىره وانكهشثبئٍخ وكزنك فً حقم حشكخ انكىاكت فً مجبل جبرثٍخ 

انشمس ورمذ مقبسوخ حهىل هزي الأسئهخ نمعبدلاد لاغشاوج مع معبدلاد هبمهزىن ووجذد كههب مزطبثقخ, 

مهزىن ٌكىن أسهم لأوهب مه واسزخشاج انطبقخ انكبمىخ مه انقىح انمحبفظخ, ألا ان انزعبمم مع معبدلاد هب

انذسجخ الأونى,  وكزنك ٌكىن انزعبمم هىب مع كمٍبد عذدٌخ ولا وزعبمم مع كمٍبد مزجهخ كمب هى انحبل فً 

  مٍكبوٍك وٍىره.

 

Introduction 
          The Lagrange and Hamilton equations are not different theories, but the 

equations are derived from Newton's laws of motion. That's where these 

equations enable us to resolve the issues most difficult , and that cannot be solved 
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using Newton's laws , for example , a particle moving on the surface of a sphere , 

or a bead moving on the surface of a spherical or spiral , it is in order that the 

physicists developed two different methods to find the equations of motion which 

Lagrange and Hamilton's equations of conservative and constraint systems, have 

been studied with increasing interest  because they appear in many relevant 

physical problems. Has been studied by Kilmister (1964,1967) [5,6] as well as by 

Simpson (2007) [2]. 

       In this paper will study Lagrange equations and Hamilton's equations for to 

the conservative systems in the field of mechanics of Newton, electrical and 

movement of the planets in the Sun 's gravity field to three examples of each 

example contains a field of these fields above. 

       The Lagrange equation is a differential equation ordinary second-order, and 

the Hamilton equations are an extension of the Lagrange equations and provides a 

new method for the formulation of the equations of motion, where the Hamilton 

equations are ordinary differential equations of the first order and be a solution to 

these equations is easier than Lagrange equations. The study also has 

conservative systems  also will pass in the next section, which from through  

conservative force   can to find the value of the potential energy. 

The theoretical side 
       The function of the Lagrange is a function given in terms of generalized 

coordinates q  and generalized velocities q  is given by the following equation : 

....(1)           ),() , ,( tqVtqqTL    

Where T  is the kinetic energy and V  the potential energy of any system can be q  
, q  are Cartesian coordinates ) ,  , ( zyx  or cylindrical coordinates  ) ,  , ( zr    or 

spherical coordinates )  ,  , ( r  or any other coordinates to describe the physical 

system.[1] 

           The Lagrange's equation is given to conservative systems in the following 

relationship: 

....(2)                      0)( 









q

L

q

L

dt

d

  
          The conservative systems the resultant  of the forces acting on a particle or 

a group of particles can be derived from the potential energy function , the 

systems are called conservative and so are not conservative, in other words the 

force F is called the force conservative if:  

                                 ....(3)                               VF 


 

where V is a function of the potential energy in terms of the coordinates of the 

position , which means that the potential energy function, given the following: 

                                                                   ) , ,( zyxVV        
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 So force components are: 

                           x

V
Fx





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Fy




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….(4)

 

                        z

V
Fz




        

Thus, the generalized forces are given as follows: 

                       
....(5)                
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In other words 
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....(7)                                                  

i

i
q

V
F




  

           This means that in the case of conservative systems be generalized 

component force equal to the negative derivative of a function for the potential 

energy of the generalized kq  contrast to this component.[2] 

           The generalized momentum ip  is defined as follows: 
 

                         
....(8)                                                  

i

i
q

L
p




  

           The Hamilton function which is given in terms of generalized coordinates 

iq and generalized momentum ip  and is given by:   
 

                        )9 ....(                     ) , ,(),,( tqqLpqtqpH ii
 

  And expresses all quantities , as well as Lagrange function of the coordinates and 

generalized momentum.  

Here H  is known the Hamiltonian, considered as a function of pq, and t     only, 

the differential of H  is given by: 

                  
....(10)          dt

t

H
dp

p

H
dq

q

H
dH i

i

i

i 












  

But from defining equation (9) we can also write: 

 
                 

....(11)        dt
t

L
dq

q

L
qd

q

L
qdpdpqdH i

i

i

i

iiii













 


  

The terms in
iqd   in equation (11) cancel in consequence of definition of 

generalized momentum and from Lagrange's equation it follows that: 

                  
....(12)                 dt

t

L
dqpdpqdH iiii




   

Comparison equation (12) with equation (10) we get: 
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....(13)                                        

i

i
p

H
q




  

                           
....(14)                                      

i

i
q

H
p




  

                           
....(15)                                      

t

L

t

H









 

Equation (13) and equation (14) are known as the canonical equations of 

Hamilton. 

           In the case of conservative systems or in the case where the potential 

energy does not depend on the velocity, generalized momenta can be written as 

follows: 

                         
....(16)               

)(
 

iii

i
q

T

q

VT

q

L
p

 












  

So you write Hamilton function in the following form after the substitute equation 

(16) in equation (9) we get: [3]   

                       

)17 ....(                          Lq
q

T
H i

i





 


  

But 

                        
....(18)                                  

2

1 2

iqmT      

Taking the derivative of the equation (18) for the velocity iq  we get:
                                                                                    

                        
19) ....(                                 i

i

qm
q

T








 

The compensation equation ( 19) and equation ( 1) in equation ( 17) we get: 

                            2 VTqmH i     

                                    VTTH  2    

                                  ....(20)                    EVTH    

 In other words, The  Hamilton function is a fixed quantity represents the total 

energy of the conservative system,  and the foregoing we conclude that if the 

Lagrange function does not depend on time , the function Hamilton equal 

quantity constant, and if the potential energy of the system does not rely on 

velocity, the Hamilton function equal to the total energy of the system. 
 

Applications 

1 - In the field of Newton 

           The first example : Body of mass m sliding down an inclined plane (with 

friction) and the slope  angle θ on the horizon as in Figure (1 ), find the equation 

of motion for it? If the coefficient of kinetic friction between block and surface is 

μ? 
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(Figure 1) 

 

1.1 Lagrange's Approach 

     The reaction force on the body on the surface is N :  
                               ....(21)                                 cos N mg                             
Consequently , the friction force between the surface and the body are: 
                               ....(22)                   cos  N  mgf                          

 The resultant of component  weight and the force of friction acting  on the body 

in the dimension of x is: 

                               ....(23)                 cos mg sin   mgFx  

Using equation ( 7) we get: 

                              ....(24)                                          xFV x  

Substitute  for the value xF  from equation (23) and make the integration process 

on the equation (24) we get the value of the potential energy of the body:  
                              ....(25)                ) cos sin (   mgxV                        
The kinetic energy given by: 

                             ....(26)                                            
2

1 2xmT 
                            

Using equation ( 1) and equation (25) and equation (26) , the function of the 

Lagrange  given by: 

                            ....(27)         )cos sin (
2

1 2   mgxxmL 
 

Using the relationship (2) we get: 

                            ....(28)                               0)()( 









x

L

x

L

dt

d

         
  

Extract from each ,
 

)(
x

L




,
 

)(
x

L




 

                        
....(29)                                              xm

x

L









                 

                           ....(30)                                       )( xm
x

L

dt

d








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                           ....(31)                    )cos (sin   



mg

x

L

 
Substitute equation (30) and equation (31) in equation (28) we get:

                          ....(32)                   a )cos (sin   gx   

Where a  is the value of the acceleration and the equation (32) represents the 

equation of motion for the body if the surface with friction. 

 

2.1. Hamilton's Approach  
    It is the definition of the generalized momentum from equation (8) we get: 

                              
                      m    x

x

L
p 







   

And from it we can write: 

                        
....(33)                                                                 

m

p
x    

From equation (9) we can get the Hamilton function following :  

                       
....(34)   )cos (sin 

2

1
        2   mgxxmpxH   

Substitute equation (33) in equation (34) we get: 

                    
....(35)                   )cos sin (

2
        

2

  mgx
m

p
H  

Using the equations of motion the canonical equation (13) and equation (14) we 

can write the equations of motion as follows:  

                             ....(36)                                                     
m

p
x 

                     
                           ....(37)                           )cos(sin   mgp                   
Derivative the equation ( 36) respect to time and then make up the value p from 

the equation (37) we get :  
                           ....(38)                         )cos(sin agx    
Where  a   represents the value of the acceleration and the equation (38) is the 

equation of motion for the body if the surface with friction it is equivalent to the 

equation (32) which is the same result that we get the mechanics of Newton and 

obtained in an approach Lagrange. 

  

2 - In the field of electrical 

   The second example : an electron moving in an electric field regularly? find 

acceleration to this electron ? 

2.1. Lagrange's Approach 
           Given conservative  electrical force to this electron: 
                              ....(39)                               eEFelec   



 

 
992 

 
 

Where E  is the intensity of the electric field and e  is the electron charge.  

Using equation ( 7) we can get: 
                              ....(40)                        xFV elec  
Substitute  for the value elecF  from equation (39) and make the integration process 

on the equation (40) we get the value of the potential energy:  
                              ....(41)                             eExV   
Its kinetic energy is 

                            ....(42)                               
2

1 2xmT   

Using equation ( 1) and equation (41) and equation (42) , the Lagrange function 

given by: 

                            ....(43)                     
2

1 2 eExxmL    

Using the relationship (2) we get: 

                             
....(44)                 0)()( 










x

L

x

L

dt

d


 

Extract from each ,
 

)(
x

L




,
 

)(
x

L




  

                          
....(45)                                    eE

x

L





 

                          
....(46)                                      xm

x

L








 

Derivative the equation ( 46) respect to time we get: 

                           ....(47)                                 )( xm
x

L

dt

d









            
Substitute equation (47) and equation (45) in equation (44)  we get: 
                             ....(48)                                  0 eExm   

                             ....(49)                                   a
m

eE
x   

The equation (49) is the value of the electron acceleration . 

2.2. Hamilton's Approach 

          The function of the Lagrange  given by equation (43) 

                              ....(50)                           
2

1 2 eExxmL    

It is the definition of the generalized momentum from equation (8) we get 

                            
                      m    x

x

L
p 







  

And from it we can write: 

                              ....(51)                                             
m

p
x    
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From equation (9) we can get the Hamilton function following: 

                              52) ....(                      
2

1
eExxmxpH    

Substitute equation (51) in equation (52) we get: 

                            ....(53)                                     
2

2

eEx
m

p
H   

Using the equations of motion the canonical equation (13) and equation (14) we 

can write the equations of motion as follows:  

                                 ....(54)                                               
m

p
x 

 
                                ....(55)                                               eEp   
Derivative the equation (54) respect to time and then make up the value p from 

the equation (55) we get: 

                             ....(56)                                         a
m

eE
x   

 
The equation (56) is equivalent to the equation (49) in the Lagrange approach 

above. 

 

3 - In the field of motion of the planets in the Sun's gravity field 
      The three  example : planet mass m  moving on elliptical orbit in the Sun's 

gravity field strongly cohesion force gravity, find the equations of motion? Using 

polar coordinates. 

3.1.  Lagrange's Approach 

Given the kinetic energy of the Cartesian coordinates the following equation:  

                                ....(57)                                   )(
2

1 22 yxmT  
 

And the laws of conversion from Cartesian coordinates to polar coordinates are:  

                             
 ....(58)                                                cosrx 
                             

                            

                              ....(59)                                                sinry   

Derivative the equation (58) and equation (59) and substitute in equation (57) we 

get the value of the kinetic energy of the polar coordinates: 

                           ....(60)                                )(
2

1 222  rrmT 
 

 The force of gravity is: 
 

                          ....(61)                                             
2r

GMm
F   

Where M  is the mass of the sun, and G  is the gravitational constant, using 

equation ( 7 ) and equation ( 61 ) we get: 
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The value of the potential energy: 

                           ....(62)                                              
r

GMm
V 

 
Using equation ( 1) , the Lagrange function given by: 

 
                          ....(63)                       )(

2

1 222

r

GMm
rrmL  

 
In this case, the generalized coordinates are r  and   so there two equations of  

motion, the first equation used the relationship (2) we get:  

                          .....(64)                                    0)()( 









r

L

r

L

dt

d

  

Extract all of the , )(
r

L




 , )(

r

L




  

                             ....(65)                             
2

2

r

GMm
mr

r

L







 

                             ....(66)                                              rm
r

L









 
Derivative the equation ( 66 ) with respect to time we get: 

                            ....(67)                                        )( rm
r

L

dt

d








 

Substitute equation (65 ) and equation ( 67) in equation ( 64 ) we get: 

                           ....(68)                                 02 
r

GM
rr 

 
The equation ( 68 ) is the equation of motion of the planet. 

The second Lagrange equation is: 

                            ....(69)                                0)( )( 











LL

dt

d

  

Extract all of the , )(


L
 , )(



L
 

                              .....(70)                                                 0






L

 

                              
....(71)                                           2





mr

L





 

                             
....(72)                                    )( 2





mr

L

dt

d





 

substitute equation (72 ) and equation (70) in equation ( 69 ) we get: 

                             
....(73)                                               02 mr  

Make the integration process on the equation (73) we get: 

                              
.....(74)                                2 constantmr    
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4.2.  Hamilton's Approach 

               The function of the Lagrange  given by equation (63): 

                                 
....(75)                 )(

2

1 222

r

GMm
rrmL    

The generalized coordinates are   and  r  the generalized coordinates associated 

with these coordinates, respectively, which can be found from the definition of 

linear momentum of the equation (9) we get:  

                              
....(76)                         rm

r

L
pr










 
And from it we can write: 

                               
....(77)                                      

m

p
r r

  

                             
....(78)                        2







mr
L

p 



  

And from it we can write: 

                           
(79) ....                                       

2mr

p   

From equation (9) we can get the Hamilton function following: 

                        
(80) ....                 )(

2

1 222

r

GMm
rrmpprH r   


 

Substitute  for the value of r  from equation (77) and value of   from equation 

(79) in equation (80) we get: 

                        
(81) ....                                   )(

2

1
2

2
2

r

GMm

r

p
p

m
H r          

Using the equations of motion the canonical equation (13) and equation (14) we 

can write the equations of motion as follows:  

                             
....(82)                                                             

m

p
r r  

                             
....(83)                                             

23

2

r

GMm

mr

p
pr  

 

                             
(84) ....                                                            

2mr

p 

 
Derivative the equation (82 ) with respect to time and substitute 

rp  from equation 

(83)  we get:
 

                             
(85) ....                                             

32

22

rm

rGMmp
r


   

and substitute p from equation (78)  in equation (85) we get: 

                            
(86) ....                                             0 

2

2 
r

GM
rr 

 
The equation (86) equivalent to equation (68) in the Lagrange approach. 
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Results and Discussion 

        After we reviewed the two approaches in solving issues physical questions is 

the Lagrange and Hamilton for the three examples were not studied before in 

these two methods of three fields in physics, is the field of Newton, electric field 

and of planets moving within the  sun's gravity field as well, and the results were 

all correspondent between the two methods and compare the solutions with what 

is in the mechanics books, we determined that the equations of Hamilton is the 

easiest approach from Lagrange approach in solving these examples because it is 

a differential equation of the first order, and the  Lagrange approach it is a 

differential equation of the second order, as well as we were able to extraction of 

the potential energy of conservative force, according to equation ( 7) . And also 

concluded there was no need to deal with the vector quantities but we have to deal 

with scalar  quantities , which removes the complexity while accessing to the 

solution. 
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