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Abstract:

In the realm of multivariate linear regression, the classical
Wilks' statistic stands out as a widely employed method for
cee hypothesis testing, yet it exhibits high sensitivity to the influence of
outliers. Numerous authors have explored non-robust test statistics
grounded in normal theories across diverse scenarios. In this
investigation, we developed a robust variant of the Wilks' statistics,
utilizing the MM-estimator. This approach relies on observation
weights determined through Hampel and Huber weight functions.
We conducted a comparative analysis between the proposed
Dol statistics and the conventional Wilks' statistic. Monte Carlo studies
2%2%1’6‘13‘_’852’ 1054633233 | \yere employed to assess the performance of the test statistics across
e various datasets, particularly under normal distribution conditions.
The study delves into the comparative effectiveness of two test
statistics—classical Wilks' and the newly proposed robust statistics.
Both exhibited type | error rates and test power close to expected
significance levels. However, in scenarios involving data
- contamination, the proposed statistical method demonstrated
’ Crossref superior performance. It emerged as the preferred approach when
dealing with corrupted or affected data.

Keywords: MM-Estimator, Outliers, Robustness, P-Value, Wilk's

' ‘ i Statistic.
. ‘ e 1. Introduction:

Lt Let's suppose we have a g-variate dependent (predictor) vector
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Ted= Ql X; = (xi, %2, ...,xiq)T) and a p-variate indepen_den.t (resporyse)
P ety e vector ¥; = (¥i1, ¥iz, -, Vip ). The model for multivariate multiple
linear regression is expressed as follows:

Y=XB+E (1)

Where Y = (Y, ...Y,)T, X = (1,, X4, ..., X,,)"),1,, is a n-
dimensional vector whose all entries are 1, B is ((g X 1) X p) slope
d o I c matrix and Z is (p X n) errors matrix. Multivariate regression finds

practical applications in diverse fields such as engineering, biology,
psychology, finance, and many others. Recent research studies on

multivariate regression include works by (Friedman and
Breiman,1997), (McKean and Davis,1993), (Ollia and
BY NC ND
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Koivunen,2003). To test the null hypothesis H,, that there is no significant relationship between the
set of dependent variables Y and the set of independent variables X, meaning all population
regression coefficients are zero, various statistics have been employed. The most widely used is
Wilks' statistic A, defined as:

= @)
Where, E and H are given by:
E=YTY -BXTy, (3)
H = BXTY — nyyT, (4)
where
B=X"X)"'XTy (5)

In the scenario where A<Agpy,v,. the null hypothesis H, is rejected. Here,
Agpvp vy TEPresents the critical values with degrees of freedom p, v =n—q—1 andvy = q, ata

significance level a in Wilks' critical values table. A significant Wilks' statistic, where its associated
p-value is below a predetermined significance threshold «, provides evidence to reject the null
hypothesis. This implies that, collectively, there is at least one independent variable that significantly
influences the set of dependent variables. Assuming that Y follows a multivariate normal distribution,
classical statistics are highly sensitive to the impact of outliers (Moller,2005). Several robust
estimators of location and scatter in multivariate data, designed to withstand the influence of potential
outliers, have been introduced. These include the M-estimator proposed by (Maronna ,1976), the
Minimum Covariance Determinant Estimator (MCD) by (Rousseeuw ,1984), and the S-estimator by
(Davies ,1987), (Rousseeuw and Leroy,1988), (Lopuhaa and Hendrik, 1989). In high dimensions,
(Woodruff and Rocke,1994) explored a robust estimator of location and scatter. The simulation study
in section 4 will discuss the impact of outliers on the Wilks' statistic. Therefore, we introduce an
alternative robust Wilks' statistic in comparison to the classical Wilks' statistic. The MM-estimator
(MM), introduced by (Yohai,1987), is utilized for its robustness in estimating scatter and location
matrices. To enhance efficiency while maintaining robustness, we propose re-weighted steps for the
MM estimator, as summarized in section 2. Accuracy assessments of the proposed approximations
are presented in section 3. Section 4 employs a simulation study to evaluate the performance of the
proposed statistics and compare different test statistics in various cases, considering factors such as
robustness, test power, and significance level.

2. Robust Estimators:

Estimating the multivariate parameters of the dataset is a prerequisite for constructing robust
Wilks' statistics. The MM-estimator proposed by (Yohai,1987) is recognized as an exceptionally
robust estimator for both the multivariate scatter matrix and the location matrix. MM-estimator is
established through a three-stage process. Initially, a preliminary regression estimate is calculated.
This initial estimate is designed to be consistent, robust and possess a high breakdown point in the
second phase, an M-estimate of the scale of errors is calculated, utilizing residuals derived from the
initial regression estimate. M-estimates are a type of robust estimator that minimizes a certain
objective function, often based on a robust function called a psi-function. This step aims to estimate
the scale of the errors, providing information about the variability in the data. Lastly, in the third
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phase, an M-estimate of the regression parameters is computed. This is done using a proper
redescending psi-function, which is a type of robust function that assigns less weight to extreme
residuals. Redescending psi-functions are crucial for maintaining robustness in the presence of
outliers. The three-stage procedure ensures that the estimator is robust at each step of the parameter
estimation process. Effective algorithms for computing MM estimates are available in widely-used
programming languages such as R, Python, SAS, and MATLAB.

3. The Proposed Wilks’ Statistics:

Due to the complicity of the classical Wilks' distribution which was introduced by (Parvin,1958),
we will use Bartlett approach for the Wilks' statistics distribution which is defined by (Rencher,

2002):
~(ve =2 @ - v + D) In) = 13, (6)
(Todorov and Filzmoser, 2010) presented an alternative re-weighted Wilks' statistic which
defined as:
_ _|ERI
Ar = | ER+Hg |’ ™)

where Hy and Ef in our proposed approximation are given by:

He=YT (WX(XTWX)—leW - Z,{—WW ) Y, (8)
o Wi
Ex=YT (W -WX XTWX)"1XTW)Y, (9)
where W =diag(w;), i=12,..,n,
Jw =wlw, w = (W, wy, .., wy)T.

In our present study, we propose the following recommendations:

1. Find the estimated location vector /4 and the estimated covariance matrix £ by using the MM-
estimate.

2. Calculate the weights w; of the observation Y; by using the Hampel weight function (Campbell,
1980) and Huber weight function those defined as:

1, MD(Y;) < d,

w; = d (10)
Dy MD(Y;) > d,,

where

1(MD(Yi)—d0

1 b,
d=dye 2\ b2 ),d: +—, b; =2, b, =125,

0 0 \/5 \/7 1 2
and MD (Y;) is the Mahalanobis distances which given by:
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MD(Y) = J (¥ = A0 T(£0) (¥, — ) (11)
And w; with Huber weight function is given by:

Wi = {1, MD(Y;) < X2 475 @), (12)

0, wtherwise

3. For j=j+ 1 calculate the weighted estimated location matrix g and the weighted estimated
covariance matrix £ as following:

N 1
plo= S TwiY; (13)

1 Wi
£ = s Xwi(Ye — ) (¥i - ) (14)

4. Iterate through steps two and three until the following criterion is met:

|zj+1/p|1’ < |§j/p|”
det(Sit1) = det(2))

Now, we will introduce robust versions of Wilks' statistics, denoted as of Agz; and Ag,, similar
to Ag in (7). These statistics rely on MM-estimators with Huber and Hampel weight functions, and
we will construct their approximate distribution.

1
— (UER - (p — v, + 1)) InAg,, = XpVnupg (15)
The degrees of freedom for vg, , and vy, the robust Wilks' statistic Ar can be found as follows:
= trace ( WX(XTWX) ™ XTW — 2" ) (16)

Vg, = trace(W — WXXTWX)™' X"W) (17)

Now, let's utilize the QQ-plots technique to assess the accuracy of Ag; and Ag, through
simulations involving k=3000 samples from the multivariate normal distribution. We will consider
various scenarios, including different values for p (number of dependent variables), g (number of
independent variables), and n (sample size). The accuracy of the classical distribution of the k
statistics will be compared to the approximate distribution of Az, and Ay, using QQ-plots. Some of
these plots will be included in (Fig.1). The standard cut-off values for a test, 95%, 97.5%, and 99%,
are presented in the plots as vertical lines. The plots, give an evident that the approximations are
accurate across all dimensions considered in the study p € 2,3,4 and g € 2,3,5, for both large and
small sample sizes, and across varying correlation levels r and r = 0.
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Figure 1. Ag, and Ag, QQ-plots

4.Monte Carlo Simulation:

The Monte Carlo process proves to be a valuable technique for evaluating the effectiveness of
test statistics. We will assess the performance of these statistics based on both the type I error rate and
the power of the test. By employing these measures, we will compare the behavior of robust statistics
with the classical Wilks' statistic. This comparison will be conducted under two scenarios: one where
the data includes outliers and another where the data follows a completely normal distribution. To
study the type | error rate and the power of the test, we will consider various cases, including the
number of independent variables p = 2,3,4, dependent variables g = 2,3, 5, sample sizes n =
20, 30,40, and correlations between components of the dependent variable Y. These correlations will
be explored in terms of no correlation » = 0, medium correlation r = 0.5, and strong correlation r =
0.75.

4.1 Significance Level:

To assess and compare the rates of type | error for the test statistics under consideration, we
generate observations of varying sizes n from both a multivariate normal distribution Y; ~ N, (0, 1)

and a distribution containing outliers using the following model:
Y, ~ Np(O, D, s=12,...,[m],

Yt~Np(u*,cI), t=[m|+1,...,n

40
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where m = jOTZ [m] is the largest positive integer that is not less than m, p* = v? /sz,o.om 1},

v = 5,¢ = 0.0625 and 1, is a vector whose all entries are 1. This is done under the null
hypothesis Hg : By = O, where B; is a matrix consisting of all rows of the coefficient matrix B
except the first row. The classical Wilks' statistic A is compared to Bartlett's y? formula in equation
(7), and the robust Wilks' statistics proposed in this study are compared to the approximate

distribution (Huber and Hampel) outlined in section 3. This simulation process is repeated k = 3000

times to calculate @ = % (where T (k), is the number of times the null hypothesis is rejected when

it is true). The values of & serve as estimates of the threshold significance level when the simulated
critical values exceed the chosen significance level of 0.05. The nominal level interval is obtained

from Fawcett and Salter's standard error formula (Salter and Facucett,1989). «a + 2 X /@

providing a standard deviation interval around the nominal level. We adopt P-value plots proposed by
(Davidson and McKinnon,1998), as they offer a comprehensive representation of how the test
statistics adhere to the approximate distribution under the null hypothesis across simulated samples.
(Fig.2) depict the P-value plots, showing that the statistics A, Az, and Ag, closely align with the 45°
line.

4.2 Power of the test:

To assess the power of the test for the considered statistics and make comparisons between
them, we generate observations of varying sizes n from both a multivariate normal distribution ¥; ~
N, (0, ) and a distribution containing outliers using the model:

Ys ~ N,(0,1), s=1.2,...,[m],
Y ~ N,(u, cD), t=[ml+1,...,n

_ 80n . . . . x _ .2 2 T
where m = 700" [m] is the largest positive integer that is not less than m, u* = v /Xp,0.001 1, ,

v = 5,¢ = 0.0625 and 1, is a vector whose all entries are 1. This is done under the alternative
hypothesis. We use Davidson and MacKinnon's method to compare the resulting power-size curves.
(Fig.3) illustrates that the statistics A , Ag and Ag,closely align with each other in terms of power
size, considering normally distributed datasets without outliers. In cases where the data is corrupted
and exhibits no or low correlation between dependent variables, Ag and Ag,outperform A. However,
in scenarios of high correlation, A, Ag and Ag,show similar performance, as depicted in (Fig.4 and
Fig.5).

=0 Nn=20 p=2 Q=2 r=0 n=20 p=2 qg=2
— A AR, — Nr, —

Actual Size
Actual Size

]
o

0.00 0.05 0.15 0.20
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Figure 5. Curves of size power, in case of the data contains outliers
5. Conclusion:

We have presented improved robust versions of Wilks’ statistic, denoted as, A, Ag,, built upon
the MM-estimator. Their approximate distributions were derived. The findings suggest that, under
normal data distribution, the proposed statistics closely resemble the classical Wilks’ statistic A.
However, in the existence of a distribution with contaminants, the proposed statistics outperform the
classical Wilks’ statistic.
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